Direkt zum Inhalt springen
login.png Login join.png Register    |
de | en
MyTUM-Portal
Technical University of Munich

Technical University of Munich

Sitemap > Bulletin Board > Diplomarbeiten, Bachelor- und Masterarbeiten > Master Thesis: Semiconductor photoanodes for photoelectrochemical water splitting (physics/physical chemistry/material science)
up   Back to  News Board    previous   Browse in News  next    

Master Thesis: Semiconductor photoanodes for photoelectrochemical water splitting (physics/physical chemistry/material science)

24.09.2021, Diplomarbeiten, Bachelor- und Masterarbeiten

The Chair for Experimental Semiconductor Physics (Prof. Sharp) at the Walter Schottky Institute of the Technical University Munich (TUM) investigates novel photoelectrode materials for solar energy conversion applications. Our research also explores new materials and different design strategies to improve the photoelectrochemical (PEC) activity and stability of energy materials under operation conditions. More information can be found on our website www.wsi.tum.de. The Master’s project will focus on photoelectrochemical water splitting to generate hydrogen as storable chemical fuel using multi-layer semiconductor photoelectrodes.

In this context, one of the main challenges is the material stability under the harsh PEC operating conditions. To overcome this limitation, the Master’s project will focus on protecting/passivating the semiconductor surface with conformal functional layers. Specifically, you will synthesize cobalt oxide thin films by plasma-enhanced atomic layer deposition on semiconductor light absorbers to yield stable and catalytically active photoelectrodes. Thereby you will explore the influence of composition, optical and interface properties on the photoelectrochemical characteristics. Furthermore, you will investigate these multilayer photoelectrodes under operando conditions utilizing nanoscale microscopy and spectroscopy techniques to gain fundamental insight into their performance under oxygen evolution condition.

In our group, you will have the chance to gain hands-on experience in atomic layer deposition of thin catalyst layers, state-of-the-art spectroscopy and microscopy techniques, optoelectronic and diffraction techniques, as well as detailed understanding of the physics of functional semiconductors. Dedicated support from a PhD student will be available during your project.

Applications shoud be send to johanna.eichhorn@wsi.tum.de. Please include your CV, a copy of your BSc thesis, and the transcript of records (Bachelor & Master).

Kontakt: johanna.eichhorn@wsi.tum.de

Todays events

no events today.

Calendar of events