Direkt zum Inhalt springen
login.png Login    |
de | en
MyTUM-Portal
Technische Universität München

Technische Universität München

Sitemap > Schwarzes Brett > Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten > Working Student (HiWi): Robotics Full-Stack for Mobile Manipulators (Husky Platform)
auf   Zurück zu  Nachrichten-Bereich    vorhergehendes   Browse in News  nächster    

Working Student (HiWi): Robotics Full-Stack for Mobile Manipulators (Husky Platform)

20.10.2025, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Position: Working Student (HiWi) – Robotics Full-Stack for Mobile Manipulators (Husky Platform)
Supervisor: Panagiotis Petropoulakis
Chair: Prof. Dr.-Ing. André Borrmann, Chair of Civil and Environmental Engineering
Start: Winter Semester 2025
Location: TUM Main Campus

Overview

Join our robotics team to develop autonomous mobile manipulation on a Clearpath Husky platform with a 6-DOF arm. You will work across the entire robotics software stack—simulation, perception, planning, and control—using ROS2, Gazebo, and modern machine learning tools.

Available Topics

  • Simulation & System Integration: Extend and maintain the simulation environment in ROS2/Gazebo. Implement new features, fix bugs, and ensure seamless integration between perception, planning, and control modules.
  • Perception & Computer Vision: Improve sensor calibration, camera alignment, and 3D perception pipelines. Enhance object detection and segmentation performance for both simulation and real-world conditions.
  • Motion Planning & Control: Develop and tune algorithms for coordinated base–arm motion, navigation, and trajectory planning in dynamic environments.

Position Details

  • Duration: Minimum 1 year (8–16 h/week). Extension possible after 3 months.
  • Type: Studentische Hilfskraft (HiWi) position.

Required Skills

  • Strong programming skills in Python and C++
  • Experience with ROS2 and Gazebo
  • Basic understanding of computer vision, control theory, and motion planning
  • Familiarity with deep learning frameworks (e.g., YOLO, segmentation models)

Application

Please send your CV, transcript of records, and a short motivation paragraph describing your relevant experience to:
panagiotis.petropoulakis@tum.de.

We look forward to your application!

Kontakt: Panagiotis Petropoulakis