Direkt zum Inhalt springen
login.png Login    |
de | en
MyTUM-Portal
Technische Universität München

Technische Universität München

Sitemap > Presse & Kommunikation > Pressemitteilungen > Feineinstellung eines Krebsmedikaments
auf   Zurück zu  Nachrichten-Bereich    vorhergehendes   Browse in News  nächster    

Lernen von der Evolution:

Feineinstellung eines Krebsmedikaments

Wie ein Schlüssel passt Salinosporamide A und blockiert das Proteasom

18.08.2009, Pressemitteilungen

Trotz aller Bemühungen der Wissenschaft ist Krebs noch immer eine tödliche Bedrohung. Neue Hoffnungen schürte vor ein paar Jahren die Entdeckung, dass man das unkontrollierte Wachstum von Krebszellen durch Blockieren des Proteasoms ausbremsen kann. Zusammen mit Forschern der kalifornischen Nereus Pharmaceuticals, Inc., haben Biochemiker der Technischen Universität München (TUM) nun den Reaktionsweg eines Naturstoffs aufgeklärt, der genau dies bewerkstelligt. In der aktuellen Ausgabe des Journal of Medicinal Chemistry berichten sie, wie man daraus neue, maßgeschneiderte Medikamente entwickeln kann.

Krebszellen sind so gefährlich, weil sie sich sehr viel schneller vermehren als andere Zellen. Einen wichtigen Beitrag dazu leistet eine bestimmte Gruppe von Eiweißen, die so genannten Kinasen. Und gegen sie richten sich auch die meisten auf dem Markt befindlichen Krebsmedikamente. Als man vor ein paar Jahren entdeckte, dass man das Zellwachstum auch durch Blockieren des Proteasoms bremsen kann, schürte das neue Hoffnungen. Das erste Medikament, das diese Strategie anwendet, wird in diesem Jahr voraussichtlich einen Umsatz von mehr als einer Milliarde US-Dollar erzielen. Doch es verursacht eine Vielzahl schwerwiegender Nebenwirkungen.

Auf der Suche nach Alternativen wurde das Kalifornische Unternehmen Nereus Pharmaceuticals, Inc., bei Salinispora tropica fündig, einem Meeres-Bakterium. Dieses produziert ein kleines Molekül, das befallene Zellen abtötet indem es die zelluläre Müllverwertungsanlage, das Proteasom, lahm legt. „Im Lebenszyklus einer Zelle werden immer wieder Proteine aufgebaut, die nach getaner Arbeit wieder vernichtet werden müssen,“ sagt Professor Michael Groll, Leiter des Forscherteams an der TU München. „Wird der Abbau blockiert, erstickt die Zelle an ihrem eigenen Müll.“

Nach vielversprechenden präklinischen Versuchen wird das vom Bakterium produzierte Salinosporamid A (NPI-0052; Sal-A) inzwischen an Patienten erprobt. „Das Bakterium hat den Stoff in Jahrmillionen der Evolution zu einer perfekten Waffe entwickelt,“ sagt Dr. Barbara Potts, Vizepräsidentin für chemische und onkologische Entwicklung des Pharmaunternehmens Nereus. Das ideale Krebsmedikament sollte jedoch nur Krebszellen abtöten und gesunde Zellen möglichst wenig schädigen. In der Hoffnung, die Reaktion modifizieren zu können, sahen sich die Forscher den Reaktionsweg genauer an.

Den Forscherteams um Barbara Potts und Michael Groll gelang es, Kristalle des durch Salinosporamid A blockierten Proteasoms herzustellen und in einer Röntgenstrukturanalyse die genaue Lage der Atome zu bestimmen. Es wurde klar, warum das Bakteriengift so effektiv ist: Wie ein Schlüssel passt das Molekül in eine Öffnung des Proteasoms und blockiert es. Und: In einer Folgereaktion reagiert es weiter zu einem nicht mehr lösbaren Komplex – der Schlüssel steckt fest und nichts geht mehr.

In der industriellen Chemie werden Halogenkohlenwasserstoffe gerne eingesetzt, weil das Halogenatom gut gegen andere Gruppen ausgetauscht werden kann. Genau diesen Trick wendet auch das Bakterium an; es benutzt ein Chloridion als Abgangsgruppe, um eine interne Ringschluss-Reaktion auszulösen. Schließt sich der Ring, ist das Schloss blockiert. Die Forscher synthetisierten nun Varianten des Salinosporamid A, und wieder gelang es von den Produkten Kristalle und Röntgenstrukturanalysen herzustellen.

Als sie das Chlor- durch ein Fluoratom ersetzten, konnten sie sogar den Ablauf der Reaktion beobachten. Nach einer Stunde Reaktionszeit steckte der Schlüssel noch im Schloss, man hätte den Schlüssel wieder herausziehen können. Ein paar Stunden später war das Fluor abgespalten und das Schloss blockiert. „Es ist unwahrscheinlich, dass es eine bessere Möglichkeit gibt das Proteasom zu blockieren, als die in Jahrmillionen von der Evolution entwickelte Methode des Bakteriums,“ sagt Michael Groll. „Nachdem wir nun wissen, wie die bestmögliche Reaktion abläuft, können wir sie gezielt variieren, um ein möglichst wirksames Medikament mit nur geringen Nebenwirkungen zu entwickeln.“

Originalpublikation:

Snapshots of the Fluorosalinosporamide/20S Complex Offer Mechanistic Insights for Fine Tuning Proteasome Inhibition Michael Groll, Katherine A. McArthur, Venkat R. Macherla, Rama Rao Manam and Barbara C. Potts, Journal of Medicinal Chemistry, published online ahead of print August 13, 2009 - DOI: 10.1021/jm900559x

Kontakt:

Prof. Dr. Michael Groll
Technische Universität München
Lehrstuhl für Biochemie
Lichtenbergstr. 4, D 85748 Garching
Tel.: +49 89 289 13361
Fax: +49 89 289 13363
E-MailInternet

Homepage des Industriepartners Nereus Pharmaceuticals, Inc.

Kontakt: presse@tum.de

Mehr Information

090818_snapshots_pw_en.pdf News Release (EN), (Type: application/pdf, Größe: 179.3 kB) Datei speichern
090818_snapshot_pw.pdf Presseinformation (DE), (Type: application/pdf, Größe: 214.4 kB) Datei speichern

Corporate Communications Center

Public Relations Team
Arcisstr. 19
80333 München

Tel.: +49.89.289.22778
Fax: +49.89.289.23388

 presse@tum.de

Ansprechpartner

Termine heute

no events today.

Veranstaltungskalender