Direkt zum Inhalt springen
login.png Login join.png Register    |
de | en
MyTUM-Portal
Technische Universität München

Technische Universität München

Sitemap > Jobs und Stellenangebote > Wissenschaftliches Personal > PhD candidate on the topic of “Geolocation text embeddings for social media data”
auf   Zurück zu  Nachrichten-Bereich    vorhergehendes   Browse in News  nächster    

PhD candidate on the topic of “Geolocation text embeddings for social media data”

10.10.2022, Wissenschaftliches Personal

For our team, we are looking for a full-time PhD candidate on the topic of “Geolocation text embeddings for social media data”.

About us

The TUM-Professorship for Data Science in Earth Observation develops innovative methods for information extraction from remote sensing data in close cooperation with the Department EO Data Science of the Remote Sensing Technology Institute of the German Aerospace Center (DLR). For this international, exciting, and cutting-edge environment, we are looking for a PhD candidate on the topic of semantic understanding of the built environment using machine learning technologies. This PhD position is part of our research on exploiting social media data for earth observation tasks. The work will be on the topic of developing geographically meaningful novel embeddings for social media messages, and will be conducted in close collaboration with our social media analysis group at DLR.

Tasks

Your duties will include:
  • Literature research
  • Designing, implementing, and evaluating novel machine learning approaches to embed social media text messages with regards to their posters’ geolocations, whether stated explicitly or inferred
  • Application of the developed embedding methods for a variety of practical tasks
  • Exchange with our scientific partners
  • Publishing the developed approaches in international journals and conferences

Requirements

Promising applicants have:
  • A master’s degree in Computer Science, Computational Linguistics, Natural Language Understanding, or similar
  • Very good programming knowledge, preferably in Python
  • Experience with state-of-the-art machine learning and NLP technologies
  • Experience with social media data or remote sensing data is a plus
  • Solid command of the English language both in written and spoken form (German language is a plus)

What we offer

We offer the possibility to join a successful research group with outstanding international reputation (see www.sipeo.bgu.tum.de). Since the Professorship is established as a joint venture between TUM and DLR, it offers the attractive combination of university-style fundamental research directly linked to practically relevant major projects and pioneering satellite missions. Depending on the applicant‘s profile and qualifications, the salary of the position will follow the TV-L pay scale up to E13.
The Technical University of Munich wants to increase the number of female employees, i.e. qualified female candidates are explicitly encouraged to apply for this position. Severely disabled candidates will be preferred if they are essentially similarly qualified and suitable for the position. The position is limited to 3 years with option of extension.

Interested?

Interested candidates please send their documents, including CV and documentation of their academic education to anna.kruspe@tum.de.

Die Stelle ist für die Besetzung mit schwerbehinderten Menschen geeignet. Schwerbehinderte Bewerberinnen und Bewerber werden bei ansonsten im wesentlichen gleicher Eignung, Befähigung und fachlicher Leistung bevorzugt eingestellt.

Hinweis zum Datenschutz:
Im Rahmen Ihrer Bewerbung um eine Stelle an der Technischen Universität München (TUM) übermitteln Sie personenbezogene Daten. Beachten Sie bitte hierzu unsere Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. Durch die Übermittlung Ihrer Bewerbung bestätigen Sie, dass Sie die Datenschutzhinweise der TUM zur Kenntnis genommen haben.

Kontakt: anna.kruspe@tum.de

Mehr Information

https://www.asg.ed.tum.de/sipeo/