Direkt zum Inhalt springen
login.png Login join.png Register    |
de | en
MyTUM-Portal
Technische Universität München

Technische Universität München

Sitemap > Jobs und Stellenangebote > Wissenschaftliches Personal > PhD and PostDoc Positions in 3D Machine Learning / 3D Vision (Dr. Dai)
auf   Zurück zu  Nachrichten-Bereich    vorhergehendes   Browse in News  nächster    

PhD and PostDoc Positions in 3D Machine Learning / 3D Vision (Dr. Dai)

24.06.2019, Wissenschaftliches Personal

The 3D Understanding Group at the Technical University of Munich is looking for highly motivated PhD students and PostDocs at the intersection of computer vision, machine learning, and computer graphics. The positions are fully-funded with payments and benefits according to German public service positions (TV-L E13, 100% for PhDs and TV-L E14, 100% for PostDocs; 45k – 57k Euro / year + benefits). 3D Semantic Scene Understanding: The world around us exists spatially in 3D, and it is crucial to understand real-world scenes in 3D to enable virtual or robotic interactions with such environments. We investigate machine learning approaches to infer semantic understanding of real-world scenes and the objects inside them from visual data, including images and depth/3D observations. Generating 3D Models From Visual Data: Imagine creating 3D photos, holograms, or your own custom video game content from a quick video observation. We develop generative 3D models from 2D or 3D observations, focusing on indoor environments. Qualifications: • Applicants for a PhD must hold a Master’s degree in computer science or equivalent • Fluent written and spoken English skills • Proficient C++ coding skills • Experience with deep learning frameworks (e.g., TensorFlow, PyTorch) • Enthusiasm and self-drive towards driving research forward :) How to Apply: • Required Documents: CV, research statement, BA/MA transcripts, (optionally, MA thesis) • Ask two recommenders who know your work to directly email recommendation letters • Send all documents (including rec. letters) directly to Dr. Dai (angela.dai@tum.de) • Please understand that we cannot review incomplete applications Website: https://angeladai.github.io/openings.html

3D Semantic Scene Understanding: The world around us exists spatially in 3D, and it is crucial to understand real-world scenes in 3D to enable virtual or robotic interactions with such environments. We investigate machine learning approaches to infer semantic understanding of real-world scenes and the objects inside them from visual data, including images and depth/3D observations.

Generating 3D Models From Visual Data: Imagine creating 3D photos, holograms, or your own custom video game content from a quick video observation. We develop generative 3D models from 2D or 3D observations, focusing on indoor environments.

Qualifications: • Applicants for a PhD must hold a Master’s degree in computer science or equivalent • Fluent written and spoken English skills • Proficient C++ coding skills • Experience with deep learning frameworks (e.g., TensorFlow, PyTorch) • Enthusiasm and self-drive towards driving research forward :) How to Apply: • Required Documents: CV, research statement, BA/MA transcripts, (optionally, MA thesis) • Ask two recommenders who know your work to directly email recommendation letters • Send all documents (including rec. letters) directly to Dr. Dai (angela.dai@tum.de) • Please understand that we cannot review incomplete applications

Website: https://angeladai.github.io/openings.html

Die Stelle ist für die Besetzung mit schwerbehinderten Menschen geeignet. Schwerbehinderte Bewerberinnen und Bewerber werden bei ansonsten im wesentlichen gleicher Eignung, Befähigung und fachlicher Leistung bevorzugt eingestellt.

Hinweis zum Datenschutz:
Im Rahmen Ihrer Bewerbung um eine Stelle an der Technischen Universität München (TUM) übermitteln Sie personenbezogene Daten. Beachten Sie bitte hierzu unsere Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. Durch die Übermittlung Ihrer Bewerbung bestätigen Sie, dass Sie die Datenschutzhinweise der TUM zur Kenntnis genommen haben.

Kontakt: angela.dai@tum.de

Mehr Information

https://angeladai.github.io/openings.html

openings openings, (Type: application/pdf, Größe: 428.0 kB) Datei speichern