Direkt zum Inhalt springen
login.png Login join.png Register    |
de | en
MyTUM-Portal
Technical University of Munich

Technical University of Munich

Feedback



Ist diese Seite veraltet oder sind die Informationen falsch?

Sitemap > Bulletin Board > Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Hier finden Sie Stellen für Studentische Hilfskräfte, Praktikantenstellen an der TU München sowie Studienarbeiten
1 | 2 | 3 | 4 | ... | 20 Next 10 items
22.11.2024
Student Assistant for Video/Audio Production and Post-Production (up to 20 hours/week)

Are you a creative, tech-savvy student passionate about video production, educational content and storytelling? The Technical University of Munich’s Department of Aerospace and Geodesy is hiring a Student Assistant to produce engaging video content on topics like climate science and planetary exploration. Gain hands-on experience in a dynamic, innovative environment while contributing to science communication and education.
read more

Kontakt: Alexander Peschel – a.peschel@tum.de; Mario Brunner – mario.brunner@tum.de; Kuat Abeshev – kuat.abeshev@tum.de

22.11.2024
Master’s Thesis in Molecular Genetics (m/w/d)

The German Heart Center of the Free State of Bavaria associated to the Technical University of Munich is a clinic with international reputation and a state of the art technical and medical equipment.
read more

Kontakt: Herr Ungermann, Personalgewinnung, Telefon-Nr. 089 1218-1706, bewerbung@dhm.mhn.de

22.11.2024
Master Thesis / Internship: AI-Powered Simulations for Real-World Medical Applications

Master Thesis / Internship: AI-Powered Simulations for Real-World Medical Applications
read more

Kontakt: j.weidner@tum.de

22.11.2024
Master Thesis: AI-Powered Simulations for Real-World Medical Applications

Scientific simulations play a crucial role in solving complex real-world problems, from modeling natural phenomena to designing advanced materials. However, traditional numerical simulation methods are often computationally expensive, limiting their scalability and real-time applicability. Recent advancements in artificial intelligence, particularly deep learning, offer a transformative opportunity to enhance the speed and efficiency of these simulations. By leveraging AI, we aim to approximate intricate computational processes while maintaining high accuracy, enabling faster insights and broader applications. Initial research shows promising results, where neural networks predict complex system behaviors using much less computational power compared to traditional methods. Your role will be to explore cutting-edge neural architectures and innovative training strategies to develop AI-driven solvers [1, 2] for real-world applications. While our main interest lies in reaction-diffusion equations for brain tumor modeling [3], this project is highly flexible, and the exact focus is relatively open and will be determined collaboratively, also taking your interest into account. Your qualifications: • Motivated by tackling real-world challenges with impactful solutions. • Currently enrolled in computer science, math, physics, or a related discipline. • Strong programming skills in Python, preferably with frameworks like PyTorch or TensorFlow. • Prior experience with modern deep learning or scientific computing is a plus. What we offer: • A chance to pioneer AI-driven solutions in scientific discovery. • Close mentorship and access to state-of-the-art hardware resources. • Collaboration with a team of experts in AI, computational science and beyond. How to apply: Send an email to Jonas Weidner j.weidner@tum.de with your CV and transcript. References: [1] Alkin, Benedikt, et al. "Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators." The Thirty-eighth Annual Conference on Neural Information Processing Systems. [2] ICML 2024 Tutorial"Machine Learning on Function spaces #NeuralOperators" https://www.youtube.com/watch?v=_j7bceE9AyA&t=2517s] [3] Weidner, Jonas, et al. "Rapid Personalization of PDE-Based Tumor Growth using a Differentiable Forward Model." Medical Imaging with Deep Learning. 2024. Jonas Weidner PhD Student at AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler, Prof. Rückert)
read more

Kontakt:  Kontaktemail -- Dieses Feld mit Kontaktinfos ersetzen -- es muss auf jeden Fall eine Email Adresse enthalten sein it-support@tum.de

21.11.2024
Studierender (m/w/d) der Fachrichtungen Biologie, Biochemie oder Medizin

Das Institut für Medizinische Mikrobiologie, Immunologie und Hygiene der Technischen Universität München sucht ab 01.02.2025 eine studentische Hilfskraft zur Verstärkung unseres Teams im Forschungslabor. Arbeitszeiten sind Mo-Fr jeweils ab 18 Uhr für ca. 7 Stunden pro Woche (maximal 28 Stunden pro Monat).
read more

Kontakt: michael.neuenhahn@tum.de

21.11.2024
Studentische Hilfskraft – Psychiatrie und Psychotherapie

Die Klinik und Poliklinik für Psychiatrie und Psychotherapie am Klinikum rechts der Isar sucht eine Studentische Hilfskraft.
read more

Kontakt: jobs.psychiatrie@mri.tum.de

21.11.2024
Studentische Hilfskraft - Comprehensive Cancer Center

Das CCC am Klinikum rechts der Isar sucht eine Studentische Hilfskraft.
read more

Kontakt: sylvia.tanzer-kuentzer@mri.tum.de

20.11.2024
IDP/Thesis: Physics-based deep learning for hyperspectral neuronavigation

A thesis/IDP/Guided research project aiming to develop a novel all-optical, AI-powered intraoperative imaging system to transform monitoring of brain tumour surgery.
read more

Kontakt: ivan.ezhov@tum.de

20.11.2024
Studentin / Studenten mit wissenschaftlichen Hilfstätigkeiten (m/w/d)

In der Stabsstelle Diversity & Equal Opportunities der Geschäftsführenden Vizepräsidentin für Talentmanagement & Diversity Prof. Dr. Claudia Peus suchen wir zum nächstmöglichen Zeitpunkt am TUM Campus München eine / einen Studentin / Studenten mit wissenschaftlichen Hilfstätigkeiten (m/w/d)
read more

Kontakt: diversity@tum.de

20.11.2024
Student Assistant in the Field of Deep Learning (m/f/d) / Studentische Hilfskraft im Bereich Deep Learning (m/w/d)

Deutsche Stellenausschreibung im Anhang als PDF-Dokument. This research project, "Development of Convolutional Neural Networks for Accelerated Analytics of Battery Materials" envisions automating the SEM image analysis process of battery materials. Therefore, the Chair of Technical Electrochemistry (TEC) under the direction of Professor Hubert Gasteiger, is looking for a student research assistant to lead this project.
read more

Kontakt: carlo.tomuschat@tum.de

1 | 2 | 3 | 4 | ... | 20 Next 10 items

Todays events

no events today.

Calendar of events