Direkt zum Inhalt springen
login.png Login join.png Register    |
de | en
MyTUM-Portal
Technische Universität München

Technische Universität München

Feedback



Ist diese Seite veraltet oder sind die Informationen falsch?

Sitemap > Presse & Kommunikation > Pressemitteilungen > Calmodulin, ein Protein beißt zu
auf   Zurück zu  Nachrichten-Bereich    vorhergehendes   Browse in News  nächster    

Proteinen bei der Arbeit zugesehen:

Calmodulin, ein Protein beißt zu

Jan Philipp Junker vor der Auswerteeinheit seines Kraft-Mikroskops

30.01.2009, Pressemitteilungen

Calmodulin ist der klangvolle Name eines der häufigsten Proteine in unseren Zellen. Es steuert die Aktivität vieler hundert anderer Eiweiße. Mit einer an der Technischen Universität München (TUM) entwickelten Methode ist es nun erstmals möglich, dem Protein bei seiner Arbeit zuzuschauen. Mit einem speziellen Kraft-Mikroskop können Forscher der TU München direkt die mechanischen Veränderungen eines einzelnen Calmodulin-Moleküls bei der Anlagerung an andere Eiweiße messen. Die für das Verständnis der Arbeit des Calmodulins wichtigen Forschungsergebnisse werden in der aktuellen Ausgabe des Magazins Science veröffentlicht (Science, 30. Januar 2009: Vol. 323. no. 5914, pp. 593 - 594).

Seit langem gilt das Eiweiß Calmodulin als eines der wichtigsten Signalmoleküle. Indem es sich anlagert oder wieder ablöst gibt es Start- und Stop-Signale für eine große Zahl von Proteinaktivitäten. Calmodulin kann bis zu vier Calcium-Ionen binden. Der Körper nutzt dies, um die Aktivität des Calmodulins zu kontrollieren. Je nach dem, wie viele Calcium-Ionen an das Calmodulin gebunden sind, nimmt es eine unterschiedliche räumliche Struktur ein. Und je nach seiner Struktur kann es sich an unterschiedliche Aminosäureketten von Proteinen anlagern.

Die Garchinger Forscher haben es nun geschafft, ein einzelnes Calmodulin-Molekül auf der einen Seite auf einer Platte zu fixieren und auf der anderen Seite an die Spitze eines Kraft-Mikroskops anzuhängen. Mit dieser Anordnung können Sie nun dem Molekül bei der Arbeit zuschauen. Geben die Wissenschaftler Calcium-Ionen in die Lösung, so dehnt sich das Calmodulin aus und bindet vier Calcium-Ionen. Es hat nun völlig andere mechanische Eigenschaften, die die Forscher mit ihrem Mikroskop gut verfolgen können. Auch die Bindung an Aminosäureketten testeten die Forscher bereits und konnten damit zeigen, wie das Calmodulin bestimmte Ketten erkennt und sich an diese anlagert.

„Das Besondere an unserer Technologie ist, dass wir direkt in wässriger Lösung arbeiten können,“ sagt Professor Matthias Rief, der die Arbeitsgruppe leitet. „Wir können genau unter den Bedingungen messen, unter denen das Protein auch in seiner natürlichen Umgebung arbeitet.“ Die Methode ist damit eine wertvolle Ergänzung der Röntgenstrukturanalyse, die zwar die genaue räumliche Struktur eines Proteins zeigt, aber dafür geordnete Kristalle braucht. Von dynamischen Vorgängen kann Röntgenstrukturanalyse allenfalls Momentaufnahmen liefern. „Wir können nun direkt beobachten, wie das Calmodulin sich die Aminosäurekette schnappt und sich umfaltet, um diese festzuhalten.“

Mit ihrem Kraft-Mikroskop können die Wissenschaftler um Matthias Rief direkt die Kräfte messen, die man benötigt, um das Calmodulin aus der jeweils stabilen Lage heraus umzufalten. Daraus können sie die Energien berechnen, die bei der Anlagerung von Calcium und Aminosäureketten an das Calmodulin auftreten. Und indem sie die mechanischen Eigenschaften über eine gewisse Zeit verfolgen, können sie auch feststellen, wie lange ein anderes Proteinfragment gebunden bleibt.

„Wir haben mit der Entwicklung dieser Methode ein Fenster aufgestoßen, durch das wir sehr viel über die grundsätzlichen Abläufe in der Zelle erfahren können,“ sagt Rief. „Es ist unglaublich faszinierend, direkt die dynamischen Abläufe ansehen zu können. Das Calmodulin wird nicht das einzige Molekül bleiben, das wir uns genauer ansehen.“

Originalbeitrag:

Jan Philipp Junker, Fabian Ziegler, Matthias Rief
Ligand-Dependent Equilibrium Fluctuations of Single Calmodulin Molecules
Science, 30 January 2009: Vol. 323. no. 5914, pp. 593 – 594 - DOI: 10.1126/science.1166191
http://www.sciencemag.org/cgi/content/short/323/5914/633

Bildmaterial:

http://mediatum2.ub.tum.de/?cunfold=681748&dir=681748&id=681748

Kontakt:

Prof. Dr. Matthias Rief
Technische Universität München
Physik Department, E22
James Franck Str. 1
85748 Garching
Tel.: +49(0)89-289-12471
Fax: +49(0)89-289-12523
mrief@ph.tum.de
Homepage der Arbeitsgruppe

Kontakt: presse@tum.de

Mehr Information

http://www.sciencemag.org/cgi/content/short/323/5914/633

090130_calmodulin_pw Presseinformation zur mechanischen Untersuchung von Protein-Molekülen, (Type: application/pdf, Größe: 135.1 kB) Datei speichern

Corporate Communications Center

Public Relations Team
Arcisstr. 19
80333 München

Tel.: +49.89.289.22778
Fax: +49.89.289.23388

 presse@tum.de

Ansprechpartner

Termine heute

no events today.

Veranstaltungskalender