Direkt zum Inhalt springen
login.png Login join.png Register    |
de | en
MyTUM-Portal
Technical University of Munich

Technical University of Munich

Feedback



Ist diese Seite veraltet oder sind die Informationen falsch?

Sitemap > Media > Press releases > Entscheidender Schritt zum Verständnis der Zellmechanik
up   Back to  News Board    previous   Browse in News  next    

Entscheidender Schritt zum Verständnis der Zellmechanik

27.08.2007, Press releases

Forscher der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) sind dem physikalischen Verständnis der Fortbewegung und Zellteilung von Gewebe-Zellen einen entscheidenden Schritt näher gekommen.

Basierend auf Erkenntnissen über einzelne Bausteine des Grundgerüsts von Zellen ist es Wissenschaftlern an TUM und LMU gelungen, das physikalische Verhalten des „Zytoskeletts“ zu erforschen und mittels theoretischer Berechnungen vorherzusagen. Diese Forschungsarbeit bildet eine wichtige Grundlage für das Verständnis der mechanischen Eigenschaften von Gewebezellen. Für viele Prozesse wie die der Zellteilung und Fortbewegung von Zellen haben die mechanischen Eigenschaften eine herausragende Bedeutung. All diese Prozesse spielen zum Beispiel bei der Entstehung von Organen im Embryonalstadium von Lebewesen eine wichtige Rolle. Mögliche praktische Anwendungen der neuen Erkenntnisse können die Entwicklung neuer Materialien oder die Verbesserung medizinischer Untersuchungsmethoden sein.

Das Zytoskelett als Grundgerüst und Antriebsmotor von Zellen
Den mechanischen Aufbau von tierischen Zellen kann man sich wie den eines Luftschiffs vorstellen. Die äußere Hülle, die Zellmembran, wird im Inneren der Zelle von einem Gerüst getragen und stabilisiert. Dieses Gerüst bezeichnet man als Zytoskelett. Es besteht aus nur wenige Nanometer dünnen Fasern, die miteinander zu einem Netz verwoben sind. Als Baustoff dienen so genannte Bio-Polymere. Diese weisen wie die Polymere in gewöhnlichen Kunststoffen eine kettenförmige Struktur auf. Das elastische Verhalten von Biopolymeren lässt sich mit ähnlichen physikalischen Modellen wie das der Kunststoff-Polymere beschreiben.
Das Zytoskelett einer Zelle gibt ihr Stabilität gegen Krafteinwirkung von außen und bleibt dabei elastisch und reißfest. Aber es spielt auch eine entscheidende Rolle bei der Fortbewegung der Zelle. Hierbei verlagert sie die Bausteine ihres Zytoskeletts Schritt für Schritt nach vorne, in Fortbewegungsrichtung entsteht vorübergehend ein Fortsatz, wie ein Arm. Dafür wird in Gegenrichtung Material abgebaut. Durch diese Umbaumaßnahme bewegt sich das Zytoskelett insgesamt nach vorne, und mit ihm die ganze Zelle. Eine derartige Fortbewegung von Zellen findet zum Beispiel statt, wenn sich bei einem Embryo Organe entwickeln oder Zellen bei der Wundheilung an vorbestimmte Orte wandern. Das Zytoskelett ist somit hochdynamisch und verändert ständig seine Struktur – ganz im Gegensatz zu einem Luftschiff oder sonstigen technischen Werkstoffen die von Menschen entwickelt wurden.

Bündelbildung als Voraussetzung für die Zellbewegung
Das Zytoskelett einer Zelle muss in Fortbewegungsrichtung stabil genug sein, um sich in dem umgebenden Gewebe durchzusetzen. Diese Stabilität kann nur erreicht werden, wenn die einzelnen Biopolymer-Fasern zu Bündeln verklebt sind – vereint sind die Elemente stärker. Eine zentrale Rolle spielt dabei der „Klebstoff“, der für diese Bündelung sorgt, so zum Beispiel das Bindeprotein Fascin. Ausgehend von dem elastischen Verhalten einzelner Biopolymer-Bündel ist es der Garchinger Forschergruppe um Prof. Andreas Bausch an der TU München nun gelungen, die Mechanik von solch einem Netzwerk mit physikalischen Methoden zu erklären. Eine wichtige Grundlage waren dabei die theoretischen Berechnungen der Arbeitsgruppe von Prof. Erwin Frey von der LMU. Beide Forschergruppen kooperieren eng im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM).

Die Menge des Klebstoffs ist entscheidend
Als Testsubstanz haben die Forscher aus dem Biopolymer Aktin und dem Bindeprotein Fascin ein sehr kontrolliertes Modellsystem aufgebaut und auf die mechanischen und strukturellen Eigenschaften hin untersucht. Die Rekonstruierung dieser Bausteine in solch einem Modellsystem stellt eine große Herausforderung dar – Untersuchungen an diesen weichen Proben erfordern besonders hochempfindliche Techniken, die kleinste Verzerrungen detektieren können und Nanometerstrukturen genauestens auflösen können.
Wichtigstes Ergebnis: abhängig von der Konzentration des „Klebstoffs“ Fascin kann das Biopolymer-Netzwerk zwei strukturelle Zustände annehmen. Im ersten Zustand liegen noch keine Aktin-Bündel vor, und eine Verformung wirkt sich gleichermaßen, „affin“, in allen Bereichen des Netzwerks aus. Es können allerdings keine stabilen Strukturen ausgebildet werden. Im zweiten Zustand dagegen wird eine Verformung nicht mehr gleichmäßig auf alle Regionen des Netzwerks übertragen, man spricht von „nicht-affinen“ Verformungen. Diese Art der Verformung wurde bisher nur vorhergesagt und konnte nun erstmals beobachtet und beschrieben werden. Ursache hierfür ist die veränderte Struktur; das Netzwerk besteht nun ausschließlich aus stabileren Aktin-Bündeln. Diese stabilen Bündel werden jedoch erst gebildet, sobald eine bestimmte Konzentration des Klebstoffs Fascin überschritten wird. Dann sind so viele Verknüpfungen unter den Fasern ausgebildet, dass sich Bündel bilden. Nur so können stabile Strukturen entstehen, wie zum Beispiel die Fortsätze, mit deren Hilfe sich die Zelle fortbewegt. So können Zellen ganz geschickt auf biochemischem Wege die Mechanik lokal auf ihre Bedürfnisse einstellen.

Vom Verständnis der Zellmechanik zu neuen Materialien, Diagnosemethoden und Therapien
Den Wissenschaftlern ist es gelungen, ausgehend vom elastischen Verhalten einzelner Aktin-Bündel das Verhalten eines komplexen Netzwerks aus diesen Fasern zu erklären. Die Möglichkeit erstmals makroskopische Eigenschaften solcher Netzwerke mit der Verformung auf der Nanometerskala erklären zu können, stellt einen wesentlichen Schritt in den Bemühungen dar, funktionale Module von Zellen unter Laborbedingungen nachzubilden und quantitativ zu verstehen.
Dies führt zu einem grundlegenden Verständnis des mechanischen Verhaltens tierischer Gewebezellen und ihrer Fortbewegungsmechanismen. Diese sind nicht nur in vielen physiologischen Prozessen, wie Zellteilung oder Wundheilung von größter Bedeutung, sondern auch für die Differenzierung von Stammzellen.
Gleichzeitig eröffnen sich damit ganz neue Möglichkeiten zur Herstellung neuartiger Werkstoffe anhand des biologischen Vorbildes, etwa für Implantate oder Funktionswerkstoffe mit herausragenden mechanischen Eigenschaften. Auf der anderen Seite können von dem genauen Verständnis der Zellmechanik auch die medizinische Diagnostik und die therapeutische Beeinflussung krankhafter Prozesse im Körper profitieren.

Originalveröffentlichung: Mechanics of bundled semiflexible polymer networks, O. Lieleg, M. M. A. E. Claessens, C. Heussinger, E. Frey, A. R. Bausch, Physical Review Letters Vol. 99, No. 8 (2007)

Kontakt:


Prof. Dr. Andreas Bausch
Technische Universität München
Physik-Department
James-Franck-Straße
D-85748 Garching
Tel.: 089 / 289-12480
E-Mail: abausch@ph.tum.de

Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Presse- und Öffentlichkeitsarbeit
Schellingstraße 4
D-80799 München, Germany
Tel.: 089 / 2180-5091
E-Mail: peter.sonntag@lmu.de
www.nano-initiative-munich.de

Kontakt: presse@tum.de

Corporate Communications Center

Media Relations Team
Arcisstr. 19
80333 München

Tel.: +49.89.289.22778
Fax: +49.89.289.23388

 presse@tum.de

Contact