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Summary 

Pathology AI foundation models are trained on massive proprietary datasets. They serve as highly 

specific feature generators from histology images that can be used in multiple downstream tasks such 

as cancer detection, segmentation, subtyping, and prognosis estimation. Foundation models can 

empirically be evaluated and compared on standardized frameworks such as eva1 PathPench2, or 

PathoBench3. However, their robustness to image perturbations and data set shift is unclear. In this 

project we build a benchmark framework which considers augmented variance of data sets to estimate 

the robustness of foundation models 

Daten 

We will use public datasets and foundation models (see tasks). 

Tasks 

T1: Literature research and review / testing of a suitable benchmal method (e.g., eva1 PathPench2, or 

PathoBench3). The method must allow for the use of custom data sets. 

T2: Selection of appopropriate public benchmark data sets (e.g. patchCamelyon1), and appropriate 

augmentation methods (color augmentation4,5, compression levels6, rotations/flipping). Visualization 

of the corresponding artifacts. 

T3: Testing of different foundation (e.g. UNI7, Virchow28, cTransPath9, TUM) models according to the 

original and augmented data sets. Evaluation of the different models for their stability across 

augmentations. 

An internal cluster (DGX H100) and the LRZ are available for training. Coding is usually done in Python 

(ScanPy, SquidPy, PyTorch). 
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