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1 Background and methodology

Artificial intelligence (AI) can potentially transform cancer diagnosis and treatment by analyzing
pathology images for precision medicine and decision support systems. Pathology’s clinical practice
usually encompasses tasks like tumor classification, segmentation, subtyping, grading, staging, and
whole slide matching. Although AI demonstrates promise in many pathological tasks, it still faces
challenges in generalization and addressing rare diseases due to limited training data availability.
[CDL+24, VBC+23]

Here, a foundation model may contribute to this challenge. A foundation Model refers to a general-
propose model pre-trained on typically unlabeled datasets, subsequently fine-tuned to apply to diverse
downstream tasks [DFW+24]. To compare the proposed foundation model with previous state-of-the-
art methods, we want to evaluate the performance of patch/slide level classification and segmentation
tasks.

2 Tasks

• Paper reading and literature review

• Evaluate proprietary and public foundation models on public datasets

• Finetune the models to obtain the best performance

• Publicly available models: UNI [CDL+24], cTransPath [WYZ+22], Virchow [VBC+23], RudolfV
[DFW+24], MSSM [CKF+23]

• Datasets for classification and detection: MHIST [WSR+21], PCAM [VLW+18], NCT-CRC
[KHM18], CAMELYON16/17 [BGM+18]

• Datasets for segmentation: SegPath [KOS+23], PanNuke [GAKB+19]

Figure 1: An example of patch-level and slide-level analysis of an HE whole slide image [KPL+22]

https://schuefflerlab.org


3 Requirements

Basic knowledge in at least one of the following areas:

• Pytorch and deep learning knowledge

• Medical image analysis

4 Supervision and Contact

Prof. Peter Schüffler and Jingsong Liu will be the supervisors. If you are interested, please briefly de-
scribe your prior experiences and attach your grade transcript, feel free to contact jingsong.liu@tum.de
or peter.schueffler@tum.de.
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