
Institute for AI and Informatics in Medicine Chair for Orthopaedics and Sports Orthopaedics Technical University of Munich



# Master Thesis: Deep Learning for Bone Tumor Detection and Segmentation: 2D vs 3D

### Abstract

The detection and segmentation of bone tumors using magnetic resonance imaging (MRI) have



crucial implications for clinical diagnosis and treatment planning. With the advent of deep learning techniques, there's a growing interest in leveraging these methods to analyze MRI bone tumor images. However, a fundamental question arises: Is 3D volumetric processing superior to traditional 2D sliceby-slice processing in deep learning tasks for MRI bone tumor analysis? This research addresses this question by evaluating the effectiveness of 2D versus 3D deep learning methodologies.

## Methodology

The methodology involves implementing several deep-learning models to compare the efficacy of 2D and 3D techniques for MRI bone tumor analysis:

- Literature review on the current state-of-the-art

# Prerequisites

- Advanced knowledge of deep learning with imaging data
- Beneficial but not necessary: experience in medicine/oncology

techniques in 2D and 3D MRI-based detection and segmentation tasks using deep learning.

- Implement tumor detection and segmentation models in both 2D and 3D.
- Explore and implement a hybrid approach that combines the strengths of both 2D and 3D processing methods to achieve superior results.
- Presenting and discussing results.

## Results

The experiments will be evaluated based on standard metrics and computational requirements to assess practical feasibility and provide insights into the benefits of 3D processing in deep-learning models for MRI bone tumor analysis. - Preferred starting date: September 2024 (with flexibility)

# References

He, Avesta, et al. "Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation." Bioengineering 10 (2023): 181.

Ushinsky, A., et al. "A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI." American Journal of Roentgenology 216, no. 1 (2021): 111-116.

Wang, H., et al. "Mixed 2D and 3D Convolutional Network with Multi-Scale Context for Lesion Segmentation in Breast DCE-MRI." Biomedical Signal Processing and Control 68 (2021): Article no. 102607.

#### Offer

- Very rare medical data with high potential for publication.
- Highly educated & interdisciplinary environment.
- Top-level hardware for scientific computing.
- Constant feedback from medical and computer science experts.

## Send your CV to:

## Anna Curto Vilalta

anna.curto-vilalta@tum.de