Direkt zum Inhalt springen
login.png Login    |
de | en
Technical University of Munich

Technical University of Munich

Sitemap > Media > Press releases > Noise makes nanoelectrodes faster
up   Back to  News Board    previous   Browse in News  next    

Miracles of the nanoworld:

Noise makes nanoelectrodes faster

Dr. Garcia-Morales and Prof. Krischer

11.03.2010, Press releases

Nanotechnology has rapidly gained in importance during recent years. However, when developing nanosystems even further scientists come up against the same problem time and again: many of the principles familiar from the normal, macroscopic world are not valid in the nanoworld. Physicists from the Technische Universitaet Muenchen (TUM) have now developed a method with which they can compute the behavior of electrochemical nanosystems. Their work is presented in the online version of the Proceedings of the National Academy of Sciences (PNAS).

In the world with which we are familiar chemical reactions appear to proceed in a continuous way. If one considers electrodes, which are only a few nanometers in size, however, chance suddenly comes into play: depending on the random motion of the molecules in the environment, reactions take place at one electrode, and at the other one first a short time later. The exact point in time at which a reaction will take place cannot be predicted. The continuous flow of current begins to stutter.

Models which accurately describe the macroscopic situation are no longer applicable on the nanoscale, and new descriptions must be found. Professor Katharina Krischer and Dr. Vladimir Garcia-Morales from the Physics Department of the TUM have now developed a calculation model that enables these reactions to be simulated.

In the course of their investigations, the scientists discovered a surprising effect: electrochemical reactions proceed faster on isolated nanoelectrodes than on macroscopic electrodes. With the aid of their new calculation models they were able to clarify how this effect comes about. The randomness of the occurrence of an electrochemical reaction causes molecular noise. In contrast to our daily experience where noise is more likely to be an interfering factor, it plays a constructive role at the nanoelectrodes.

The work published was supported by the European Union (project DYNAMO) and the Nanosystem Initiative München cluster of excellence. Starting April, Dr. Garcia-Morales will be working as a Junior Fellow at the Institute for Advanced Study of the Technische Universitaet Muenchen (TUM-IAS).

Original publication:

Fluctuation enhanced electrochemical reaction rates at the nanoscale,
Vladimir García-Morales and Katharina Krischer,
PNAS early online edition, Doi: 10.1073/pnas.0909240107


Prof. Katharina Krischer 
Technische Universitaet Muenchen
Physics Department (E19a)
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12535 Fax: +49 89 289 12338
E-Mail - Internet

Kontakt: presse@tum.de

More Information

100311_nanoelektro_pw.pdf Druckversion der Presseinformation (DE), (Type: application/pdf, Size: 139.6 kB) Save attachment
100311_nanoelektro_pw_en.pdf Printable version of the press release (EN), (Type: application/pdf, Size: 154.2 kB) Save attachment

Corporate Communications Center

Media Relations Team
Arcisstr. 19
80333 München

Tel.: +
Fax: +



Todays events

16:30 - 18:00

VO Space Communication & Operations

10:00 - 16:30

Entscheidungen für meine Karriere treffen

17:00 - 18:00

Find your Job with Xing and LinkedIn

Calendar of events