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Brief description

Simulating complex, highly interconnected systems such as the climate, biology, or society typically
involve methods from the "traditional" field of scientific computing. These methods are usually reliable
and explainable through their foundations in rigorous mathematics. Examples are efficient space dis-
cretization schemes such as sparse grids and scalable, parallel solvers for partial differential equations.
Unfortunately, most of them are not immediately applicable to the extremely high-dimensional, hetero-
geneous, and scattered data where neural networks are usually used. Those methods employed in the
AI community, on the other hand, are typically not reliable or explainable in the traditional sense, and
pose problems illustrated through adversarial examples and brittle generalization results.
Towards the goal of explainable, reliable, and efficient AI, two PhD projects are embedded in an Emmy
Noether research group from Dr. Felix Dietrich1 that connects the two worlds of scientific HPC and
deep learning, forming a concept we call “Harmonic AI”. Specifically, we will combine linear operator
theory and deep learning methods through harmonic analysis. The benefit of such a link between
AI and linear operators is bi-directional. Inference, classification, and training of neural networks will
be understood mostly in terms of linear algebra. This will open the field to much more mathematical
rigor and enable more mathematicians to work on AI methods. Simultaneously, applied AI researchers
obtain reliable methods that can currently only be found for problems outside the field, such as Finite
Element Methods or iterative Newton-Raphson solvers.
The PhD projects are devoted to explainability of AI by bridging the gap to rigorous mathematics:
Leveraging the common principles between the Laplace operator [5], Gaussian processes [16], and
neural networks, the first PhD project will connect AI and linear algebra. The second PhD project in the
group will combine ideas from the Neural Tangent Kernel [9] and the Koopman operator [3, 6] toward
a dynamical systems interpretation of iterative AI methods, including training and data processing in
neural network layers.

Figure 1 from [11]: Multi-
fidelity modeling with Gaussian
processes.

Figure 2: Three eigenfunctions
of the Laplace-Beltrami opera-
tor on a sphere, approximated
with Diffusion Maps [5] and
datafold [13].

Figure 3: Koopman opera-
tor approximation and predic-
tion of crowd measurements in
Melbourne, Australia [12].

1See https://www.in.tum.de/en/news-single-view-en/article/neue-emmy-noether-forschungsgruppe-um-dr-f-dietrich-bewilligt0/
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Time line

The project is designed to be completed in three years. Adjustments are possible.

Requirements

The following items are sufficient to start and successfully complete the project.

• Minimum degree: Master in Informatics, Mathematics, or related (minimum GPA 2.5/5 or better).

• Knowledge about Machine Learning (neural networks, Gaussian processes), Scientific Comput-
ing (matrix approximations), Linear operator theory (ideally: Laplace/Koopman operators).

• Experience with TensorFlow, PyTorch, or similar software is ideal, but not necessary.

• Soft skills: analytical thinking, structured and organized work, intrinsic motivation.

Tasks and Details

You can apply to one or both of the projects available. One of them is focused on the Laplace operator,
the other on the Koopman operator.
The Laplace-Beltrami operator is a core object in harmonic analysis. It is intimately connected to
stochastic calculus, its eigenfunctions have a multiscale structure that is related to spatial discretisa-
tion schemes such as sparse grids [4], it is the main object employed by spectral approximation and
classification methods [1], and is the generator of Gaussian (diffusion) processes [17]. Algorithms to
approximate the operator are available, for example “Diffusion Maps” formulated by our collaborator R.
R. Coifman [5] and implemented in our software datafold

2.
The other linear operator, for the second PhD project, was first studied by B. Koopman [10]. This
“Koopman operator”, albeit linear, captures the dynamics of nonlinear systems, and allows researchers
to predict the evolution of observables [3]. Essentially, the Koopman operator is to dynamical systems
what the Laplace operator is to geometry: these operators encode everything about the system or
object under study, and numerical approximations of them can therefore be used to access, process,
store, and analyse all properties that are important to the respective application [2, 6, 14].
We already develop a code base called datafold

3 for efficient approximation of linear (Laplace and
Koopman) operators on point clouds in our research group [13], in collaboration with Prof. Gerta Köster.
Gaussian Processes can be approximated on images with the kernel from [8], several codes to approx-
imate landmarks on manifolds (the codes from [15, 7] and other, more efficient methods) are also
available.
Throughout the project, to disseminate, demonstrate, and test the new methods in a proof of concept,
we will collaborate with the simulation groups from Prof. Christian Mendl (Quantum Computing Group
at TUM4) studying quantum dynamics and from Prof. Gerta Köster (Crowd Simulation group5, Depart-
ment of Computer Science and Mathematics, University of Applied Sciences Munich) studying human
crowds.

2See https://datafold-dev.gitlab.io/datafold/index.html
3See https://datafold-dev.gitlab.io/datafold/index.html
4See https://www5.in.tum.de/~quanTUMcomputing/
5See https://www.cs.hm.edu/die_fakultaet/ansprechpartner/professoren/koester/index.de.html
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How to apply

Please apply by filling out the form at the following URL, and refer to this project in the section on “topic
suggestion”:

https://www5.in.tum.de/lehre/thesis-application/

TUM has been pursuing the strategic goal of substantially increasing the diversity of its staff. As an
equal opportunity and affirmative action employer, TUM explicitly encourages nominations of and ap-
plications from women as well as from all others who would bring additional diversity dimensions to
the university’s research and teaching strategies. Preference will be given to disabled candidates with
equal qualifications. International candidates are also highly encouraged to apply.

Contact
Dr. rer. nat. Felix Dietrich
Boltzmannstr. 3
85748 Garching
Tel. +49 (89) 289 18 638
felix.dietrich@tum.de
www.fd-research.com
www.tum.de
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