Fachprüfungs- und Studienordnung für den Masterstudiengang Industrielle Biotechnologie an der Technischen Universität München

Vom 13. Juni 2019

Aufgrund von Art. 13 Abs. 1 Satz 2 in Verbindung mit Art. 58 Abs. 1 Satz 1, Art. 61 Abs. 2 Satz 1 sowie Art. 43 Abs. 5 des Bayerischen Hochschulgesetzes (BayHSchG) erlässt die Technische Universität München folgende Satzung:

Inhaltsverzeichnis:

§ 34	Geltungsbereich, akademischer Grad
•	Studienbeginn, Regelstudienzeit, ECTS
§ 36 § 37	Qualifikationsvoraussetzungen Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen
8 31	Unterrichtssprache
§ 38	Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis
-	Prüfungsausschuss
-	Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen
§ 41	Studienbegleitendes Prüfungsverfahren, Prüfungsformen
§ 42	Anmeldung und Zulassung zur Masterprüfung
§ 43	Umfang der Masterprüfung
§ 44	Wiederholung, Nichtbestehen von Prüfungen
•	Studienleistungen
•	Multiple-Choice-Verfahren
0	Master's Thesis
-	Bestehen und Bewertung der Masterprüfung
§ 48	Zeugnis, Urkunde, Diploma Supplement

Anlage 1: Prüfungsmodule Anlage 2: Eignungsverfahren

In-Kraft-Treten

§ 49

§ 34 Geltungsbereich, akademischer Grad

- (1) ¹Die Fachprüfungs- und Studienordnung für den Masterstudiengang Industrielle Biotechnologie (FPSO) ergänzt die Allgemeine Prüfungs- und Studienordnung für Bachelor- und Masterstudiengänge an der Technischen Universität München (APSO) vom 18. März 2011 in der jeweils geltenden Fassung. ²Die APSO hat Vorrang.
- (2) ¹Aufgrund der bestandenen Masterprüfung wird der akademische Grad "Master of Science" verliehen. ²Dieser akademische Grad kann mit dem Hochschulzusatz "(TUM)" geführt werden.

§ 35 Studienbeginn, Regelstudienzeit, ECTS

- (1) ¹Für den Masterstudiengang Industrielle Biotechnologie wird ein Studienbeginn zum Wintersemester empfohlen. ²Bei entsprechender Umstellung des Pflicht- bzw. Wahlpflichtprogramms, welche gemeinsam mit einem Mentor oder einer Mentorin des Studiengangs erfolgen sollte, ist unter Beachtung der Studienfortschrittskontrolle gemäß § 38 Abs. 1 in Verbindung mit § 10 APSO auch ein Beginn zum Sommersemester möglich. ³Die Inanspruchnahme einer ausführlichen Beratung durch die Studiengangsleitung wird empfohlen.
- (2) ¹Der Umfang der für die Erlangung des Mastergrades erforderlichen Credits im Pflicht-, Wahlpflicht- und Wahlbereich beträgt 90 (74 Semesterwochenstunden), verteilt auf drei Semester. ²Hinzu kommen maximal sechs Monate für die Durchführung der Master's Thesis nach § 46. ³Der Umfang der zu erbringenden Prüfungsleistungen im Pflicht-, Wahlpflicht- und Wahlbereich gemäß Anlage 1 im Masterstudiengang Industrielle Biotechnologie beträgt damit mindestens 120 Credits. ⁴Die Regelstudienzeit für das Masterstudium beträgt insgesamt vier Semester.

§ 36 Qualifikationsvoraussetzungen

- (1) Die Qualifikation für den Masterstudiengang Industrielle Biotechnologie wird nachgewiesen durch:
 - einen an einer in- oder ausländischen Hochschule erworbenen mindestens sechssemestrigen qualifizierten Bachelorabschluss oder einen mindestens gleichwertigen Abschluss in den Studiengängen Biochemie, (Molekulare) Biotechnologie, Biologie, Bioprozesstechnik, Bioinformatik, Chemieingenieurwesen, Chemische Biotechnologie, Technologie und Biotechnologie der Lebensmittel, Brauwesen und Getränketechnologie, Nachwachsende Rohstoffe, Maschinenwesen, Ingenieurwissenschaften oder vergleichbaren Studiengängen;
 - 2. das Bestehen des Eignungsverfahrens für den Masterstudiengang Industrielle Biotechnologie gemäß Anlage 2.
- (2) Ein im Sinne von Abs. 1 Nr. 1 qualifizierter Hochschulabschluss liegt vor, wenn keine wesentlichen Unterschiede hinsichtlich der in den wissenschaftlich orientierten einschlägigen, in Abs. 1 Nr. 1 genannten Bachelorstudiengängen der TUM oder mit

- vergleichbaren Abschlüssen erworbenen Kompetenzen (Lernergebnisse) bestehen und diese den fachlichen Anforderungen des Masterstudiengangs entsprechen.
- (3) Zur Feststellung nach Abs. 2 wird der Modulkatalog der Bachelorstudiengänge Biochemie, Molekulare Biotechnologie, Biologie, Bioinformatik, Bioprozesstechnik, Chemieingenieurwesen, Chemische Biotechnologie, Technologie und Biotechnologie der Lebensmittel, Brauwesen und Getränketechnologie, Nachwachsende Rohstoffe, Maschinenwesen oder Ingenieurwissenschaften herangezogen.
- (4) Über die Vergleichbarkeit des Studiengangs, über die Feststellung der speziellen Eignung sowie über die Anrechnung von Kompetenzen bei der Prüfung der an ausländischen Hochschulen erworbenen Hochschulabschlüsse entscheidet die Kommission zum Eignungsverfahren unter der Beachtung des Art. 63 Bayerisches Hochschulgesetz.
- (5) ¹Abweichend von Abs. 1 Nr. 1 können Studierende, die in einem in Abs. 1 Nr. 1 genannten Bachelorstudiengang immatrikuliert sind, auf begründeten Antrag zum Masterstudium zugelassen werden. ²Der Antrag darf nur gestellt werden, wenn im Bachelorstudiengang Modulprüfungen im Umfang von mindestens 140 Credits zum Zeitpunkt der Antragsstellung nachgewiesen werden. ³Der Nachweis über den bestandenen Bachelorabschluss ist innerhalb eines Jahres nach Aufnahme des Masterstudiums nachzuweisen.

§ 37 Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen, Unterrichtssprache

- (1) ¹Generelle Regelungen zu Modulen und Lehrveranstaltungen sind in den §§ 6 und 8 APSO getroffen. ²Bei Abweichungen zu Modulfestlegungen gilt § 12 Abs. 8 APSO.
- (2) Der Studienplan mit den Lehrveranstaltungen im Pflicht-, Wahlpflicht- und Wahlbereich ist in der Anlage 1 aufgeführt.
- (3)¹Im Umfang von mindestens 30 Credits haben Studierende mit einem oder einer vom Studienfakultätsrat der Studienfakultät Munich School of Engineering beauftragten Mentor oder Mentorin einen individuellen Semesterstudienplan zusammenzustellen. ²Die entsprechenden Veranstaltungen sind aus der Wahlpflichtmodulliste (Anlage 1) ³Zum Mentor auszuwählen. oder zur Mentorin kann iede gemäß der Hochschulprüferverordnung prüfungsberechtigte Person bestellt werden, die Lehrveranstaltungen im Masterstudiengang Industrielle Biotechnologie anbietet.
- (4) ¹In der Regel ist im Masterstudiengang Industrielle Biotechnologie die Unterrichtssprache Deutsch. ²Soweit einzelne Module ganz oder teilweise in englischer Sprache abgehalten werden, ist dies in Anlage 1 gekennzeichnet.
- (5) Ist in der Anlage für ein Modul angegeben, dass dieses in englischer oder deutscher Sprache abgehalten wird, so gibt der oder die Prüfende spätestens zu Vorlesungsbeginn die Unterrichtssprache verbindlich in geeigneter Weise bekannt.

§ 38 Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis

- (1) Prüfungsfristen, Studienfortschrittskontrolle und Fristversäumnis sind in § 10 APSO geregelt.
- (2) ¹Mindestens eine der in der Anlage 1 aufgeführten Modulprüfungen aus den Grundlagen (Wahlpflichtmodule) muss bis zum Ende des zweiten Semesters erfolgreich abgelegt werden. ²Bei Fristüberschreitung gilt § 10 Abs. 5 APSO.

§ 39 Prüfungsausschuss

¹Die für Entscheidungen in Prüfungsangelegenheiten zuständige Stelle gemäß § 29 APSO ist der Masterprüfungsausschuss Industrielle Biotechnologie der Studienfakultät Munich School of Engineering. ²Der Masterprüfungsausschuss (Prüfungsausschuss) besteht aus fünf Mitgliedern. ³Dabei gehört dem Prüfungsausschuss aus den Fakultäten für Maschinenwesen, Chemie und dem Wissenschaftszentrum Weihenstephan jeweils mindestens eine Person an.

§ 40 Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen

Die Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen regelt § 16 APSO.

§ 41 Studienbegleitendes Prüfungsverfahren, Prüfungsformen

- (1) Mögliche Prüfungsformen gemäß § 12 und 13 APSO sind neben Klausuren und mündlichen Prüfungen in diesem Studiengang insbesondere Laborleistungen, Übungsleistungen (ggf. Testate), Berichte, Projektarbeiten, Präsentationen, Lernportfolios, wissenschaftliche Ausarbeitungen und der Prüfungsparcours.
 - a) ¹Eine Klausur ist eine schriftliche Arbeit unter Aufsicht mit dem Ziel, in begrenzter Zeit mit den vorgegebenen Methoden und definierten Hilfsmitteln Probleme zu erkennen und Wege zu ihrer Lösung zu finden und ggf. anwenden zu können. ²Die Dauer von Klausurarbeiten ist in § 12 Abs. 7 APSO geregelt.
 - b) ¹Laborleistungen beinhalten je nach Fachdisziplin Versuche, Messungen, Arbeiten im Feld, Feldübungen etc. mit dem Ziel der Durchführung, Auswertung und Erkenntnisgewinnung. ²Bestandteil können z.B. sein: die Beschreibung der Vorgänge und die jeweiligen theoretischen Grundlagen inkl. Literaturstudium, die Vorbereitung und praktische Durchführung, ggf. notwendige Berechnungen, ihre Dokumentation und Auswertung sowie die Deutung der Ergebnisse hinsichtlich der zu erarbeitenden Erkenntnisse. ³Die Laborleistung kann durch eine Präsentation ergänzt werden, um die kommunikative Kompetenz bei der Darstellung von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ⁴Die konkreten Bestandteile der jeweiligen Laborleistung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
 - c) ¹Die **Übungsleistung (ggf. Testate)** ist die Bearbeitung von vorgegebenen Aufgaben (z.B. mathematischer Probleme, Programmieraufgaben, Modellierungen etc.) mit

- dem Ziel der Anwendung theoretischer Inhalte zur Lösung von anwendungsbezogenen Problemstellungen. ²Sie dient der Überprüfung von Faktenund Detailwissen sowie dessen Anwendung. ³Die Übungsleistung kann u.a. schriftlich, mündlich oder elektronisch durchgeführt werden. ⁴Mögliche Formen sind bspw. Hausaufgaben, Übungsblätter, Programmierübungen, (E-)Tests, Aufgaben im Rahmen von Hochschulpraktika etc. ⁵Die konkreten Bestandteile der jeweiligen Übungsleistung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- d) ¹Ein **Bericht** ist eine schriftliche Aufarbeitung und Zusammenfassung eines Lernprozesses mit dem Ziel, Gelerntes strukturiert wiederzugeben und die Ergebnisse im Kontext eines Moduls zu analysieren. ²In dem Bericht soll nachgewiesen werden, dass die wesentlichen Aspekte erfasst wurden und schriftlich wiedergegeben werden können. ³Mögliche Berichtsformen sind bspw. Exkursionsberichte, Praktikumsberichte, Arbeitsberichte etc. ⁴Der schriftliche Bericht kann durch eine Präsentation ergänzt werden, um die kommunikative Kompetenz bei der Darstellung der Inhalte vor einer Zuhörerschaft zu überprüfen
- Rahmen einer Projektarbeit soll in mehreren Phasen (Initiierung, Ideenfindung, Problemdefinition. Rollenverteilung. Kriterienentwicklung, Durchführung, Präsentation, schriftliche Auswertung) Entscheidung, Projektauftrag als definiertes Ziel in definierter Zeit und unter Einsatz geeigneter Instrumente erreicht werden. ²Zusätzlich kann eine Präsentation Bestandteil der Projektarbeit sein, um die kommunikative Kompetenz bei der Darstellung von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ³Die konkreten Bestandteile der jeweiligen Projektarbeit und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt. ⁴Die Projektarbeit ist auch in Form einer Gruppenarbeit möglich. ⁵Hierbei soll nachgewiesen werden, dass Aufgaben im Team gelöst werden können. ⁶Der als Prüfungsleistung jeweils zu bewertende Beitrag muss deutlich individuell erkennbar und bewertbar sein. ⁷Dies gilt auch für den individuellen Beitrag zum Gruppenergebnis.
- f) ¹Die wissenschaftliche Ausarbeitung ist eine schriftliche Leistung, in der eine anspruchsvolle wissenschaftliche bzw. wissenschaftlich-anwendungsorientierte Fragestellung mit den wissenschaftlichen Methoden der jeweiligen Fachdisziplin selbstständig bearbeitet wird. ²Es soll nachgewiesen werden, dass eine den Lernergebnissen des jeweiligen Moduls entsprechende Fragestellung unter Beachtung der Richtlinien für wissenschaftliches Arbeiten vollständig bearbeitet werden kann – von der Analyse über die Konzeption bis zur Umsetzung. ³Mögliche Formen, die sich in ihrem jeweiligen Anspruchsniveau unterscheiden, sind z.B. Thesenpapier, Abstract, Essay, Studienarbeit, Seminararbeit wissenschaftliche Ausarbeitung kann durch eine Präsentation und ggf. ein Kolloguium begleitet werden, um die kommunikative Kompetenz des Präsentierens von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ⁵Die konkreten Bestandteile der jeweiligen wissenschaftlichen Ausarbeitung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- g) ¹Eine **Präsentation** ist eine systematische, strukturierte und mit geeigneten Medien (wie Beamer, Folien, Poster, Videos) visuell unterstützte mündliche Darbietung, in der spezifische Themen oder Ergebnisse veranschaulicht und zusammengefasst sowie komplexe Sachverhalte auf ihren wesentlichen Kern reduziert werden. ²Mit der Präsentation soll die Kompetenz nachgewiesen werden, sich ein bestimmtes Themengebiet in einer bestimmten Zeit so zu erarbeiten, dass es in anschaulicher, übersichtlicher und verständlicher Weise einem Publikum präsentiert bzw. vorgetragen werden kann. ³Außerdem soll nachgewiesen werden, dass in Bezug auf

das jeweilige Themengebiet auf Fragen, Anregungen oder Diskussionspunkte des Publikums sachkundig eingegangen werden kann. ⁴Die Präsentation kann durch eine kurze schriftliche Aufbereitung ergänzt werden. ⁵Die Präsentation kann als Einzeloder als Gruppenleistung durchgeführt werden. ⁶Der als Prüfungsleistung jeweils zu bewertende Beitrag muss deutlich individuell erkennbar und bewertbar sein. ⁷Dies gilt auch für den individuellen Beitrag zum Gruppenergebnis.

- h) ¹Eine **mündliche Prüfung** ist ein zeitlich begrenztes Prüfungsgespräch zu bestimmten Themen und konkret zu beantwortenden Fragen. ²In mündlichen Prüfungen soll nachgewiesen werden, dass die in den Modulbeschreibungen dokumentierten Qualifikationsziele erreicht wurden sowie die Zusammenhänge des Prüfungsgebietes erkannt wurden und spezielle Fragestellungen in diese Zusammenhänge eingeordnet werden können. ³Die mündliche Prüfung kann als Einzelprüfung oder als Gruppenprüfung durchgeführt werden. ⁴Die Dauer der Prüfung ist in § 13 Abs. 2 APSO geregelt.
- i) ¹Ein **Lernportfolio** ist eine nach zuvor festgelegten Kriterien ausgewählte schriftliche Darstellung von eigenen Arbeiten, mit der Lernfortschritt und Leistungsstand zu einem bestimmten Zeitpunkt und bezogen auf einen definierten Inhalt nachgewiesen werden sollen. ²Die Auswahl der Arbeiten, deren Bezug zum eigenen Lernfortschritt und ihr Aussagegehalt für das Erreichen der Qualifikationsziele müssen begründet werden. ³In dem Lernportfolio soll nachgewiesen werden, dass für den Lernprozess Verantwortung übernommen und die in der Modulbeschreibung dokumentierten ⁴Als Qualifikationsziele erreicht wurden. Bestandteile erfolgreicher Selbstlernkontrollen des Lernportfolios kommen je nach Modulbeschreibung insbesondere Arbeiten mit Anwendungsbezug, Internetseiten, Bibliographien, Analysen, Thesenpapiere sowie grafische Aufbereitungen eines Sachverhalts oder einer Fragestellung in Betracht. ⁵Die konkreten Bestandteile des jeweiligen Lernportfolios und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- j) ¹Im Rahmen eines **Prüfungsparcours** sind innerhalb einer Prüfungsleistung mehrere Prüfungselemente zu absolvieren. ²Die Prüfungsleistung wird im Gegensatz zu einer Modulteilprüfung organisatorisch (räumlich bzw. zeitlich) zusammenhängend geprüft. ³Prüfungselemente sind mehrere unterschiedliche Prüfungsformate, die in ihrer Gesamtheit das vollständige Kompetenzprofil des Moduls erfassen. ⁴Prüfungselemente können insbesondere auch Prüfungsformen nach den Buchstaben a) bis i) sein. ⁵Die Prüfungsgesamtdauer ist in dem Modulkatalog anzugeben, Prüfungsform und Prüfungsdauer der einzelnen Prüfungselemente sind in der Modulbeschreibung anzugeben.
- (2) ¹Die Modulprüfungen werden in der Regel studienbegleitend abgelegt. ²Art und Dauer einer Modulprüfung gehen aus Anlage 1 hervor. ³Bei Abweichungen von diesen Festlegungen ist § 12 Abs. 8 APSO zu beachten. ⁴Für die Bewertung der Modulprüfung gilt § 17 APSO. ⁵Die Notengewichte von Modulteilprüfungen entsprechen den ihnen in der Anlage 1 zugeordneten Gewichtungsfaktoren.
- (3) Ist in Anlage 1 für eine Modulprüfung angegeben, dass diese schriftlich oder mündlich ist, so gibt der oder die Prüfende spätestens zu Vorlesungsbeginn in geeigneter Weise den Studierenden die verbindliche Prüfungsart bekannt.
- (4) Auf Antrag der Studierenden und mit Zustimmung der Prüfenden können bei deutschsprachigen Modulen Prüfungen in englischer Sprache abgelegt werden.

§ 42 Anmeldung und Zulassung zur Masterprüfung

- (1) Mit der Immatrikulation in den Masterstudiengang Industrielle Biotechnologie gelten Studierende zu den Modulprüfungen der Masterprüfung als zugelassen.
- (2) ¹Die Anmeldung zu einer Modulprüfung im Pflicht-, Wahlpflicht- und Wahlbereich regelt § 15 Abs. 1 APSO. ²Die Anmeldung zu einer entsprechenden Wiederholungsprüfung regelt § 15 Abs. 2 APSO.

§ 43 Umfang der Masterprüfung

- (1) Die Masterprüfung umfasst:
 - 1. die Modulprüfungen in den entsprechenden Modulen gemäß Abs. 2,
 - 2. die Master's Thesis gemäß § 46.
- (2) ¹Die Modulprüfungen sind in der Anlage 1 aufgelistet. ²Es sind 45 Credits in den Pflichtmodulen, mindestens 30 Credits gemäß § 37 Abs. 3 in Wahlpflichtmodulen und mindestens 15 Credits in Wahlmodulen nachzuweisen. ³Bei der Wahl der Module ist § 8 Abs. 2 APSO zu beachten.

§ 44 Wiederholung, Nichtbestehen von Prüfungen

- (1) Die Wiederholung von Prüfungen ist im § 24 APSO geregelt.
- (2) Das Nichtbestehen von Prüfungen regelt § 23 APSO.

§ 45 Studienleistungen

Im Masterstudiengang Industrielle Biotechnologie sind außer Prüfungsleistungen keine Studienleistungen zu erbringen.

§ 45 a Multiple-Choice- Verfahren

Die Durchführung von Multiple-Choice-Verfahren ist in § 12 a APSO geregelt.

§ 46 Master's Thesis

(1) ¹Gemäß § 18 APSO haben Studierende im Rahmen der Masterprüfung eine Master's Thesis anzufertigen. ²Die Master's Thesis kann von fachkundigen Prüfenden der am Studiengang Industrielle Biotechnologie beteiligten Fakultäten der Technischen

Universität München ausgegeben und betreut werden (Themensteller oder Themenstellerin). ³Die fachkundigen Prüfenden nach Satz 2 werden vom Prüfungsausschuss bestellt.

- (2) ¹Der Abschluss des Moduls Master's Thesis soll in der Regel die letzte Prüfungsleistung darstellen. ²Studierende können auf Antrag vorzeitig zur Master's Thesis zugelassen werden, wenn das Ziel der Thesis im Sinne des § 18 Abs. 2 APSO unter Beachtung des bisherigen Studienverlaufs erreicht werden kann.
- (3) ¹Die Zeit von der Ausgabe bis zur Ablieferung der Master's Thesis darf sechs Monate nicht überschreiten. ²Die Master's Thesis gilt als abgelegt und nicht bestanden, soweit sie ohne gemäß § 10 Abs. 7 APSO anerkannte triftige Gründe nicht fristgerecht abgeliefert wird. ³Die Master's Thesis kann in deutscher oder englischer Sprache angefertigt werden.
- (4) ¹Der Abschluss der Master's Thesis besteht aus einer schriftlichen Ausarbeitung und einem Vortrag über deren Inhalt. ²Der Vortrag geht nicht in die Benotung ein.
- ¹Falls die Master's Thesis nicht mit mindestens "ausreichend" (4,0) bewertet wurde, so kann sie einmal mit neuem Thema wiederholt werden. ²Sie muss spätestens sechs Wochen nach dem Bescheid über das Ergebnis erneut angemeldet werden.

§ 47 Bestehen und Bewertung der Masterprüfung

- (1) Die Masterprüfung ist bestanden, wenn alle im Rahmen der Masterprüfung gemäß § 43 Abs. 1 abzulegenden Prüfungen bestanden sind und ein Punktekontostand von mindestens 120 Credits erreicht ist.
- (2) ¹Die Modulnote wird gemäß § 17 APSO errechnet. ²Die Gesamtnote der Masterprüfung wird als gewichtetes Notenmittel der Module gemäß § 43 Abs. 2 und der Master's Thesis errechnet. ³Die Notengewichte der einzelnen Module entsprechen den zugeordneten Credits. ⁴Das Gesamturteil wird durch das Prädikat gemäß § 17 APSO ausgedrückt.

§ 48 Zeugnis, Urkunde, Diploma Supplement

Ist die Masterprüfung bestanden, so sind gemäß § 25 Abs. 1 und § 26 APSO ein Zeugnis, eine Urkunde und ein Diploma Supplement mit einem Transcript of Records auszustellen.

§ 49 In-Kraft-Treten

- (1) ¹Diese Satzung tritt am 1. Oktober 2019 in Kraft. ²Sie gilt für alle Studierenden, die ab dem Wintersemester 2019/20 ihr Fachstudium an der Technischen Universität München aufnehmen. ³Abweichend von den Sätzen 1 und 2 gilt die Anlage 2: Eignungsverfahren erstmals für das Bewerbungsverfahren zum Sommersemester 2020.
- (2) ¹Gleichzeitig tritt die Fachprüfungs- und Studienordnung für den Masterstudiengang Industrielle Biotechnologie an der Technischen Universität München vom 5. Mai 2010,

zuletzt geändert durch Nr. 53 der Sammeländerungssatzung über die Kommission im Eignungsverfahren der Masterstudiengänge an der Technischen Universität München vom 25. April 2018, außer Kraft. ²Studierende, die bereits vor dem Wintersemester 2019/20 ihr Fachstudium an der Technischen Universität aufgenommen haben, schließen ihr Studium nach der Satzung gemäß Satz 1 ab.

Anlage 1: Prüfungsmodule

Nr.	Modulbezeich- nung	Lehrform SWS VÜPS	Sem.	SWS	Credits	Prüfungsart	Prüfungs- dauer	Unterrichts- sprache
Pflich	ntmodule	•		•		,	•	
	Enzyme Enginee			1	Т	T	Т	1
CS0076	Enzym Engineering	2V/1S	2	3	5	Übungsleistung	-	d/e
CH0160	Konzeption biokatalytischer Systeme	2V/1Ü	3	3	5	Klausur	60	d/e
	Metabolic Engine	eerina						
MW1141	Modellierung zellulärer Systeme	2V/2Ü	2	4	5	Klausur	90	d/e
WZ2626	Angewandte Mikrobiologie	3V	2	3	5	Klausur	60	d/e
	Bioprocess Engi	neering						
MW1386	Industrielle Bioprozesse (MSE)	3V	2	3	5	Klausur	90	d
MW0019	Bioreaktoren	3V	3	3	5	Klausur	90	d
	Bioseparation Er	ngineering		l		I		
MW1145	Bioproduktaufar- beitung 1 (Adsorptive Verfahren)	2V/1Ü	2	3	5	Klausur	90	d/e
MW1146	Bioproduktaufar- beitung 2 (Membran- verfahren)	2V/1Ü	3	3	5	Klausur	90	d/e
	Practical Training	g						
MW1388	Praktikum Bioprozesstechnik (MSE)	4P	3	4	5	Laborleistung	60	d
	Master's Thesis							
SE0002	Master's Thesis	-	4	-	30	Wissenschaftliche Ausarbeitung	-	d/e

Wahlpflichtmodule: Aus den folgenden beiden Listen für Wahlpflichtmodule sind in Absprache mit nach § 37 Abs. 3 bestimmten Mentoren oder Mentorinnen mindestens 30 Credits als Wahlpflichtmodule zu erbringen. Hierbei muss sichergestellt sein, dass keine Wahlpflichtmodule belegt werden, die inhaltlich äquivalent zu Modulen des Erststudiums sind.

Nr.	Modulbezeich- nung	Lehrform SWS V Ü P S	Sem.	SWS	Credits	Prüfungsart	Prüfungs- dauer	Unterrichts- sprache
CH4117	Biochemie	2V/1Ü	1	3	5	Klausur	90	d
CH4121	Biochemisches Praktikum	6P	2	6	5	Laborleistung	-	d
WZ5293	Biochemie	3V/3P	1	6	6	Klausur Laborleistung (SL)	90	d
WZ2016	Proteine: Struktur, Funktion und Engineering	2V	1	2	3	Klausur	90	d
WZ2033	Proteine, Protein- Engineering und Immunologische Grundlagen ¹	4V	2	4	6	Klausur	90	d
WZ0703	Genetik	3V	2	3	5	Klausur	60	d
WZ0132	Grundlagen Mikrobiologie mit Übungen	4V/4Ü	1	8	8	Klausur	60	d
CH2104	Enzymtechnologie	2V/1Ü	1	3	4	Klausur	90	d
WZ2634	Bioinformatik für Biowissenschaften 1	2V/2Ü	1	4	5	Klausur	90	d
MW2248	Datenanalyse und Versuchsplanung	2V/2Ü	2	4	5	Klausur	90	d/e
MW2249	Optimierung und Modellanalyse	2V/2Ü	3	4	5	Klausur	90	d/e
MW1378	Angewandte Ingenieurs- mathematik (MSE)	4V/2Ü	1	6	8	Klausur	120	d/e
CH4110	Grundlagen der Technischen Chemie	3V/1Ü	1	4	5	Klausur	150	d
MW1930	Thermische Verfahrenstechnik 1	2V/1Ü	1	3	5	Klausur	90	d
CH0604	Mechanische Verfahrenstechnik	2V/1Ü	1	3	5	Klausur	90	d

MW2102	Einführung in die Prozess- und Anlagentechnik	2V/1Ü	2	3	5	Klausur	90	d
CH4114	Reaktionstechnik und Kinetik	3V/1Ü	2	4	5	Klausur	90	d
MW0129	Thermische Verfahrenstechnik 2	2V/1Ü	3	3	5	Klausur	90	d
MW2397	Grundlagen rechnergestützter Methoden in der Biotechnologie	3V	1	3	4	Übungsleistung	-	d/e
WZ2013	Molekulare Bakteriengenetik	2V	1	2	3	Klausur	60	d
WZ2034	Molekulare Bakteriengenetik und Metabolic Engineering ¹	4V	2	4	5	Klausur	90	d
CH3187	Zellbiologie	2V/1Ü	2	3	5	Klausur	90	d/e
WZ8105	Praktikum Enzymoptimierung	4P	2	4	4	Laborleistung	-	d/e
CS0056	Technische Biokatalyse	2V/1Ü	3	3	5	Klausur	90	d/e
WZ2002	Einführung in die Genetik	2V/4Ü	1	2	5	Klausur	90	d
MW1903	Bioverfahrens- technik	3V	1	3	5	Klausur	90	d
MW2258	Umweltbioverfah- renstechnik	3V	2	3	5	Klausur	60	d/e

¹ Modul wird erstmals ab dem Sommersemester 2022 angeboten.

Wahlmodule: Es sind mindestens 15 Credits aus frei wählbaren Modulen zu erbringen. Die Credits können auch in Modulen anderer Fakultäten oder Hochschulen erworben werden. Davon sind mindestens 3 Credits aus dem Bereich "Allgemeinbildende Module" zu erbringen. Mindestens 12 Credits sind aus dem Bereich "Frei wählbare Fachmodule" zu erbringen. Ein beispielhafter Wahlkatalog wird rechtzeitig vor Vorlesungsbeginn in geeigneter Weise durch die Munich School of Engineering bekannt gegeben.

Erläuterungen:

Sem. = Semester; SWS = Semesterwochenstunden; V = Vorlesung; Ü = Übung; P = Praktikum; S = Seminar; d = deutsch; e = englisch; d/e = deutsch oder englisch.

In der Spalte Prüfungsdauer ist bei schriftlichen und mündlichen Prüfungen die Prüfungsdauer in Minuten aufgeführt.

Creditbilanz der jeweiligen Semester:

Semester	Credits Pflichtmodule	Credits Wahlpflicht-	Credits Wahlmodule	Credits Master's-	Gesamt- credits	Anzahl der Prüfungen
		module		Thesis		
1	0	20	9	0	29	6
2	25	5	0	0	30	6
3	20	5	6	0	31	6
4	0	0	0	30	30	
Summe	45	30	15	30	120	

Anlage 2: Eignungsverfahren

Eignungsverfahren für den Masterstudiengang Industrielle Biotechnologie an der Technischen Universität München

1. Zweck des Verfahrens

¹Die Qualifikation für den Masterstudiengang Industrielle Biotechnologie setzt neben den Voraussetzungen des § 36 Abs. 1 Nr. 1 den Nachweis der Eignung gemäß § 36 Abs. 1 Nr. 2 nach Maßgabe der folgenden Regelungen voraus. ²Die besonderen Qualifikationen und Fähigkeiten der Bewerber bzw. Bewerberinnen sollen dem Berufsfeld Industrielle Biotechnologie entsprechen. Einzelne Eignungsparameter sind:

- 1.1 Fähigkeit zu wissenschaftlicher Arbeitsweise, bzw. grundlagen- und methodenorientierter Arbeitsweise,
- 1.2 vorhandene Fachkenntnisse aus dem Erststudium in Biochemie, Molekulare Biotechnologie, Biologie, Bioprozesstechnik, Bioinformatik, Chemieingenieurwesen, Chemische Biotechnologie, Technologie und Biotechnologie der Lebensmittel, Brauwesen und Getränketechnologie, Nachwachsende Rohstoffe, Maschinenwesen, Ingenieurwissenschaften oder vergleichbaren Studiengängen,
- 1.3 gute sprachliche Ausdrucksfähigkeit sowohl in Deutsch als auch in Englisch,
- 1.4 Fähigkeit und Interesse, sich effizient neues komplementäres Fachwissen und methodische Ansätze anzueignen (ingenieurwissenschaftliches Fachwissen bei naturwissenschaftlichem Bachelorabschluss, bzw. biowissenschaftliches Fachwissen bei ingenieurwissenschaftlichem Bachelorabschluss),
- 1.5 Fähigkeit, theoretische Kenntnisse effizient in praktisches Handeln umzusetzen und
- 1.6 praktische Erfahrung im Umfeld der künftigen Tätigkeiten.

2. Verfahren zur Prüfung der Eignung

- 2.1 Das Verfahren zur Prüfung der Eignung wird halbjährlich durch die Studienfakultät der Munich School of Engineering durchgeführt.
- 2.2 Die Anträge auf Zulassung zum Verfahren sind zusammen mit den Unterlagen nach 2.3.1 bis einschließlich 2.3.5 für das Wintersemester im Online-Bewerbungsverfahren bis zum 31. Mai und für das Sommersemester bis zum 15. Januar an die Technische Universität München zu stellen (Ausschlussfristen).
- 2.3 Dem Antrag sind beizufügen:
- 2.3.1 ein tabellarischer Lebenslauf,
- 2.3.2 ein Transcript of Records mit Modulen im Umfang von mindestens 140 Credits; das Transcript of Records muss von der zuständigen Prüfungsbehörde oder dem zuständigen Studiensekretariat ausgestellt sein,
- 2.3.3 das von der Studienfakultät Munich School of Engineering vorgegebene Formular, in dem der Bewerber oder die Bewerberin die Noten und Credits aller bisher abgelegten Prüfungsleistungen zusammenstellt,
- 2.3.4. eine schriftliche Begründung von maximal zwei DIN-A4 Seiten für die Wahl des Studiengangs Industrielle Biotechnologie an der Technischen Universität München, in der die Bewerber oder Bewerberinnen sowohl in Deutsch (maximal eine Seite) als auch in Englisch (maximal eine Seite) die besondere Leistungsbereitschaft darlegen, aufgrund welcher spezifischer Begabungen und Interessen sie sich für den Masterstudiengang Industrielle Biotechnologie an der Technischen Universität

München besonders geeignet halten; die besondere Leistungsbereitschaft ist beispielsweise durch Ausführungen zu studiengang-spezifischen Berufsausbildungen, Praktika, Auslandsaufenthalten oder über eine fachgebunden erfolgte Weiterbildung im Bachelorstudium, die über Präsenzzeiten und Pflichtveranstaltungen hinaus gegangen ist, zu begründen; dies ist gegebenenfalls durch Anlagen zu belegen; weitere Anhaltspunkte für die schriftliche Begründung liefern die in Nr. 1.1 bis Nr. 1.6 aufgeführten Eignungsparameter,

2.3.5. eine Versicherung, dass die Begründung der Wahl des Studiengangs selbstständig und ohne fremde Hilfe angefertigt wurde und die aus fremden Quellen übernommenen Gedanken als solche gekennzeichnet sind.

3. Kommission zum Eignungsverfahren

- 3.1 ¹Das Eignungsverfahren wird von einer Kommission durchgeführt, der in der Regel der oder die für den Masterstudiengang Industrielle Biotechnologie zuständige Studiendekan oder Studiendekanin, mindestens zwei Hochschullehrer oder Hochschullehrerinnen und mindestens ein wissenschaftlicher Mitarbeiter oder eine wissenschaftliche Mitarbeiterin angehören. ²Mindestens die Hälfte der Kommissionsmitglieder müssen Hochschullehrer oder Hochschullehrerinnen sein. ³Eine studentische Vertretung soll in der Kommission beratend mitwirken.
- 3.2 ¹Die Bestellung der Mitglieder erfolgt durch den Studiendekan oder die Studiendekanin der Munich School of Engineering. ²Mindestens ein Hochschullehrer oder eine Hochschullehrerin wird als stellvertretendes Mitglied der Kommission bestellt. ³Den Vorsitz der Kommission führt in der Regel der Studiendekan oder die Studiendekanin. ⁴Für den Geschäftsgang gilt Art. 41 BayHSchG in der jeweils geltenden Fassung.
- 3.3. ¹Wird nach dieser Satzung die Kommission tätig, so ist die widerrufliche Übertragung bestimmter Aufgaben auf einzelne Kommissionsmitglieder zulässig. ²Wird nach Satz 1 bei der Wahrnehmung bestimmter Aufgaben lediglich ein Kommissionsmitglied tätig, so muss dieses Hochschullehrer oder Hochschullehrerin sein. ³Werden nach Satz 1 bei der Wahrnehmung bestimmter Aufgaben zwei oder mehr Kommissionsmitglieder tätig, so muss hiervon mindestens die Hälfte Hochschullehrer oder Hochschullehrerin sein. ⁴Die Kommission stellt eine sachgerechte Geschäftsverteilung sicher. ⁵Besteht bei einem Bewertungskriterium des Eignungsverfahrens ein Bewertungsspielraum und werden bei der Bewertung dieses Kriteriums mindestens zwei Kommissionsmitglieder tätig, bewerten die Kommissionsmitglieder unabhängig nach der angegebenen Gewichtung, sofern nichts anderes geregelt ist; die Punktzahl ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen, wobei auf ganze Punktzahlen aufgerundet wird.

4. Zulassung zum Eignungsverfahren

- 4.1 Die Zulassung zum Eignungsverfahren setzt voraus, dass die in Nr. 2.3 genannten Unterlagen fristgerecht und vollständig vorliegen.
- 4.2 Wer die erforderlichen Voraussetzungen erfüllt, wird im Eignungsverfahren gemäß Nr. 5 geprüft.
- 4.3 Wer nicht zugelassen wird, erhält einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid.

5. Durchführung des Eignungsverfahrens

5.1 Erste Stufe der Durchführung des Eignungsverfahrens

5.1.1 ¹Die Kommission beurteilt anhand der gemäß Nr. 2.3 geforderten schriftlichen Bewerbungsunterlagen, ob die Bewerber oder Bewerberinnen die Eignung zum Studium gemäß Nr. 1 besitzen (Erste Stufe der Durchführung des Eignungsverfahrens). ²Die Kommission hat die eingereichten Unterlagen auf einer Skala von 0 bis 100 Punkten zu bewerten, wobei 0 das schlechteste und 100 das beste zu erzielende Ergebnis ist. ³Folgende Bewertungskriterien gehen ein:

1. fachliche Qualifikation

¹Die curriculare Analyse der vorhandenen Fachkenntnisse erfolgt dabei nicht durch schematischen Abgleich der Module, sondern auf der Basis von Kompetenzen. ²Sie orientiert sich an den in den folgenden beiden Tabellen aufgelisteten elementaren Fächergruppen, die entweder für Bachelorabsolventen oder Bachelorabsolventinnen eines ingenieurwissenschaftlichen Studiengangs oder für Bachelorabsolventen oder Bachelorabsolventinnen eines naturwissenschaftlichen Studiengangs berücksichtigt werden.

³Fächergruppen Bachelor Ingenieurwissenschaften:

- A) Grundlagen des Ingenieurwesens (Mathematik, Technische Mechanik, Maschinenzeichnen, Werkstoffkunde, Apparate-/Anlagenbau),
- B) Prozesstechnische Grundlagen (Thermodynamik, Wärme- und Stofftransport, Mechanische Verfahrenstechnik, Thermische Verfahrenstechnik, Reaktionstechnik, Bioverfahrenstechnik).

⁴Fächergruppe Bachelor Naturwissenschaften:

- A) Naturwissenschaftliche Grundlagen (Mathematik, Physik, Chemie, Physikalische Chemie),
- B) Biochemie / Biotechnologie (Biochemie, Mikrobiologie, Genetik, Molekularbiologie, Physiologie, Immunologie).

⁵Wenn festgestellt wurde, dass keine wesentlichen Unterschiede hinsichtlich der erworbenen Kompetenzen (Lernergebnisse) bestehen, werden maximal 30 Punkte vergeben. ⁶Fehlende Kompetenzen werden entsprechend den Credits der zugehörigen Module des entsprechenden Bachelorstudiengangs der Technischen Universität München abgezogen. ⁷Negative Punkte werden nicht vergeben.

2. Abschlussnote

¹Für jede Zehntelnote, die der über Prüfungsleistungen im Umfang von 140 Credits errechnete Schnitt besser als 2,3 ist, werden 4 Punkte vergeben. ²Abweichend davon beträgt die Maximalpunktzahl bei der Abschlussnote 1,0 50. ³Negative Punkte werden nicht vergeben. ⁴Bei ausländischen Abschlüssen wird die über die bayerische Formel umgerechnete Note herangezogen. ⁵Liegt zum Zeitpunkt der Bewerbung ein Abschlusszeugnis mit mehr als 140 Credits vor, erfolgt die Bewertung auf der Grundlage der am besten benoteten Module im Umfang von 140 Credits. ⁶Die Bewerber oder Bewerberinnen haben diese im Rahmen des Antrags aufzulisten sowie die Richtigkeit der gemachten Angaben schriftlich zu versichern. ⁷Der Schnitt wird aus benoteten Modulprüfungen im Umfang von

140 Credits errechnet. ⁸Der Gesamtnotenschnitt wird als gewichtetes Notenmittel der Module errechnet. ⁹Die Notengewichte der einzelnen Module entsprechen den zugeordneten Credits.

3. Begründungsschreiben

¹Die schriftliche Begründung wird von zwei Kommissionsmitgliedern auf einer Skala von 0 bis 20 Punkten bewertet. ²Der Inhalt des Begründungsschreibens wird nach folgenden Kriterien bewertet:

- a) kann das Bewerbungsanliegen sachlich formulieren,
- b) kann den Zusammenhang zwischen persönlichen Interessen und Inhalten des Studiengangs gut strukturiert darstellen,
- kann die besondere Eignung und Leistungsbereitschaft für den Masterstudiengang durch Argumente und sinnvolle Beispiele (siehe 2.3.4) überzeugend begründen,
- d) kann wesentliche Punkte der Begründung in angemessener Weise sprachlich hervorheben.
- e) kann nach den Regeln der deutschen und englischen Rechtschreibung und Grammatik schreiben.

³Die Kommissionsmitglieder bewerten unabhängig jedes der fünf Kriterien, wobei die Kriterien gleich gewichtet werden. ⁴Die Punktzahl ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen, wobei auf ganze Punktzahlen aufgerundet wird.

- 5.1.2 ¹Die Punktzahl der ersten Stufe ergibt sich aus der Summe der Einzelbewertungen. ²Nichtverschwindende Kommastellen sind aufzurunden.
- 5.1.3 Wer mindestens 70 Punkte erreicht hat, erhält eine Bestätigung über das bestandene Eignungsverfahren.
- 5.1.4 ¹Ungeeignete Bewerber und Bewerberinnen mit einer Gesamtnote von weniger als 50 Punkten erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid, der von der Leitung der Hochschule zu unterzeichnen ist. ²Die Unterschriftsbefugnis kann delegiert werden.

5.2 Zweite Stufe der Durchführung des Eignungsverfahrens

- 5.2.1 ¹Die übrigen Bewerber oder Bewerberinnen werden zu einem Eignungsgespräch eingeladen. ²Im Rahmen der zweiten Stufe des Eignungsverfahrens wird die im Erststudium erworbene Qualifikation und das Ergebnis des Auswahlgesprächs bewertet. ³Der Termin für das Eignungsgespräch wird mindestens eine Woche vorher bekannt gegeben. ⁴Zeitfenster für eventuell durchzuführende Eignungsgespräche müssen vor Ablauf der Bewerbungsfrist festgelegt sein. ⁵Der festgesetzte Termin des Gesprächs ist von den Bewerbern oder Bewerberinnen einzuhalten. ⁶Wer aus von ihm oder ihr nicht zu vertretenden Gründen an der Teilnahme am Eignungsgespräch verhindert ist, kann auf begründeten Antrag ein Nachtermin bis spätestens zwei Wochen vor Vorlesungsbeginn erhalten.
- 5.2.2 ¹Das Eignungsgespräch ist für die Bewerber oder Bewerberinnen einzeln durchzuführen. ²Das Gespräch umfasst eine Dauer von mindestens 20 und höchstens 30 Minuten je Bewerber oder Bewerberin. ³Der Inhalt des Gesprächs erstreckt sich auf folgende Themen:

- 1. besondere Leistungsbereitschaft für den Masterstudiengang Industrielle Biotechnologie gemäß der unter Nr. 2.3.4 für die Beurteilung des Begründungsschreibens genannten Kriterien,
- 2. grundlagen- und anwendungsbezogene Fragen aus dem Bereich der Ingenieurwissenschaften, Prozesstechnik, Naturwissenschaften, Biochemie oder Biotechnologie zur Beurteilung der fachlichen Qualifikation,
- 3. Einschätzung des persönlichen Eignungsprofils; eine Eignung ergibt sich zum Beispiel aus der Fähigkeit, Aussagen durch Argumente und sinnvolle Beispiele überzeugend darzustellen und auf gestellte Fragen angemessen antworten zu können.
- 4. Fähigkeit, theoretische Kenntnisse effizient in praktisches Handeln umzusetzen; diese kann zum Beispiel durch das mühelose Verständnis für Fragestellungen und Zusammenhänge der industriellen Biotechnologie anhand der Skizzierung des Lösungsweges für eine exemplarische Problemstellung gezeigt werden.
- ⁴Gegenstand können auch die nach 2.3 eingereichten Unterlagen sein. ⁵Fachwissenschaftliche Kenntnisse, die erst in dem Masterstudiengang Industrielle Biotechnologie vermittelt werden sollen, entscheiden nicht. ⁶Mit Einverständnis der Bewerber oder Bewerberinnen kann ein Mitglied aus der Gruppe der Studierenden in der Zuhörerschaft zugelassen werden.
- 5.2.3 ¹Das Eignungsgespräch wird von mindestens zwei Mitgliedern der Kommission durchgeführt. ²Die Kommissionsmitglieder bewerten unabhängig jeden der vier Schwerpunkte, wobei die vier Schwerpunkte gleich gewichtet werden. ³Jedes der Mitglieder hält das Ergebnis des Eignungsgesprächs auf einer Punkteskala von 0 bis 80 fest, wobei 0 das schlechteste und 80 das beste zu erzielende Ergebnis ist. ⁴Die Punktzahl ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen. ⁵Nichtverschwindende Kommastellen sind aufzurunden.
- 5.2.4 ¹Die Gesamtpunktzahl der zweiten Stufe ergibt sich als Summe der Punkte aus 5.2.3 sowie der Punkte aus 5.1.1.1 (fachliche Qualifikation) und 5.1.1.2 (Note). ²Wer 90 oder mehr Punkte erreicht hat, wird als geeignet eingestuft.
- 5.2.5 ¹Das von der Kommission festgestellte Ergebnis des Eignungsverfahrens wird dem Bewerber oder der Bewerberin schriftlich mitgeteilt. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden. ⁴Ein Ablehnungsbescheid ist mit Begründung und einer Rechtsbehelfsbelehrung zu versehen.
- 5.2.6 Zulassungen im Masterstudiengang Industrielle Biotechnologie gelten bei allen Folgebewerbungen in diesem Studiengang.

6. Dokumentation

¹Der Ablauf des Eignungsverfahrens ist zu dokumentieren. ²Über das Eignungsgespräch ist ein Protokoll anzufertigen, aus dem der äußere Ablauf des Geschehens ersichtlich sein müssen (Tag, Ort, Beginn und Ende des Auswahlgesprächs, die Namen der anwesenden Kommissionsmitglieder, die Namen der Bewerber und Bewerberinnen sowie eventuelle besondere Vorkommnisse). ³Im Protokoll über das Eignungsgespräch sind zudem die wesentlichen Gegenstände und Ergebnisse des Gesprächs festzuhalten, diese können stichwortartig aufgeführt werden.

7. Wiederholung

Wer den Nachweis der Eignung für den Masterstudiengang Industrielle Biotechnologie nicht erbracht hat, kann sich einmal erneut zum Eignungsverfahren anmelden.

Ausgefertigt aufgrund des Beschlusses des Akademischen Senats der Technischen Universität München vom 15. Mai 2019 sowie der Genehmigung durch den Präsidenten der Technischen Universität München vom 13. Juni 2019.

München, 13. Juni 2019

Technische Universität München

Wolfgang A. Herrmann Präsident

Diese Satzung wurde am 13. Juni 2019 in der Hochschule niedergelegt; die Niederlegung wurde am 13. Juni 2019 durch Anschlag in der Hochschule bekannt gemacht. Tag der Bekanntmachung ist daher der 13. Juni 2019.